Oh, My Aching Back A mechanical Problem Randy Raugh, MPT, C-Ped Oh, My Aching Back! Incidence Basic Anatomy Physical Stress Theory Mechanical causes Common diagnoses (What are they?) Excessive stress
 Incidence: How Common? Leading cause of disability in people < 45 years old \$50 Billion in U.S. LB care Up to 80% of adults experience it Despite more automated labor, better diagnostic imaging, etc., the incidence is rising At any time, about 1% of the U.S. work force is chronically disabled from LBP
 Problems with LBP Commonly believed that "most people get better" - no matter what is done. Croft et al studied 463 LBP patients with aggressive follow up - 59% did not return to MD - After 2 weeks, 2% had no pain - After 3 weeks, 21% no pain - After 1 year, 75% still had pain Diagnostic Difficulties MRIs with and without symptoms often the same Treat the patient not the MRI Start with conservative care - Physical therapy Pain alone is not a good reason for surgery Other medical problems mimic LBP (sex organs, abdominal aorta, pancreas, kidneys, etc.)
 Basic Anatomy Skeletal anatomy –rigid support & protection Muscles – moves the skeletal structure Ligaments – holds the bones together Cartilage – between joints - "glide & slide" and shock absorption Nerves- carry "messages" from brain ↔ body
 Intervertebral Discs "Shock absorbers?" McGill "they do not absorb, but transmit shock" They function to: Allow bending "Spacers" Transmit loads to the end-plates Micro-fractures in vertebrae may account for some of the shock absorption The Nervous System The SPINAL cord carries signals from brain to spinal nerves
 From base of brain to L1-L2 Then spinal nerves form Cauda Equina ("horse's tail")

	Spinal nerves emerge from between the vertebrae
	 Carry sensory messages from body to the brain
	 Carry movement messages to the body from the brain
11	
12	
	Muselos
13	Muscles
	 Work in opposing fashion to move the spine
	Flexors vs Extensors
	The lumbar spine is inherently unstable
	 Despite ligaments that hold bone to bone
	Muscle act as stabilizers
	Need proper balance
14	Need proper balance
14	I with a series of the
15	Lumbar movements
	 Flexion – places significant load on discs
	Extension – places load on facets
	 Rotation—high torque to annulus of disc and facets on same side
	Side Bending – high load to facets and discs
16	Side beliang Ingir load to faces and also
17	
18	
19	All tissues respond to physical stress:
	Excessive – Pain, inflammation, injury
	Adaptation – hypertrophy
	Normal – everyday activities
	Insufficient – atrophy, deterioration
	 Influencing factors: load, duration, frequency
	True for: (bone, muscle, tendon, cartilage, ligaments, tendon)
	-
20 🗐	Mechanical low back pain caused by too much stress
	 Atrophy – decreased stress tolerance (less stress injures more easily)
	External factors:
	 Vibration exposure
	– Chronic extreme positions (sitting?, dentists, etc)
	• Intrinsic factors:
	Smoking
	Some medications
	Genetics (spinal shape, weakened connective tissue)
	· Genetics (spinal shape, weakened connective tissue)
	•
	•
	-
21 🗔	Excessive stress via:
	 Low load/long duration (sitting on an airplane)
	- Working in extreme positions
	"Creep" = plastic bag overstretched
	• 20 minutes of overstretching may take 40 minutes to recover
	Tall man on low chair
	 Short woman on chair too high
	Sleeping positions
	High load/short duration stresses
	- Motor vehicle accidents
	- High velocity sports (e.g. skiing)

22 Common Low Back Pathologies 23 Disc problems

- Bulging/herniation (or "ruptured annulus")
 - -Most common ages 25 to 55
 - If nerve root impinged (pain, tingling, loss of strength down one or both legs
 - -90% at L5-S1 (which has most rotation and flexion)
- Risk factors
 - Heavy lifting
 - -Smoking
 - -Poor body mechanics (lift with flexed, twisted spine)
 - Vibration exposure
 - Exercises that overload disc tolerance levels
 - -Chronic flexion and/or rotation (sitting?)
 - Tall man on low chair

24 Discs: risks continued

- · Excessive stretching into end-range flexion and/or rotation
 - Sports or activities that overly flex low back (yoga and bicycling can do this)
- Weak or long oblique muscles in waist that restrict rotation
- McGill many load cycles at end-range flexion were needed to rupture a disc in the lab

25 Stenosis (Diminished space for the nerve)

- The "aging spine" decreased space as structures collapse, shrink, diminish
- · Symptoms: pain with standing/walking; relieved with sitting
- Foraminal stenosis
 - on the side of the vertebral column where the spinal nerves emerge
 - Somewhat position dependent
 - Extension
- Central stenosis (less common)
 - In the Spinal Canal encroachment against the spinal cord above L2 or nerve roots below it
- Can also cause lower extremity symptoms

26 Stenosis

- Foraminal stenosis is largely dependent on position of the spine
 - -Patient prefers leaning on shopping carts to open the nerve spaces
 - Causes:
 - -Weak or long abdominal muscles
 - -Over developed spinal extensor muscles, or latissimus dorsi
 - -Short hip flexors (e.g. psoas)
 - -Weak gluteus maximus (buttocks)
 - -Chronic postures of extension
 - »E.g. Short woman on chair too high
- A stress tolerant problem
 - Very low load, very long duration problem not fragile

29 Sacroiliac Pain

- · Excess motion or "stuck" joint between sacrum and Ilium
- Controversial
 - Many tissues connect into the region
 - Clinical tests have not been found to be reliable

- -Movement is only a few millimeters
- · Injection studies have found it to be real in some people

30 Most Low Back damage occurs at:

- Most flexible segment
- · Law of Physics: "Movement takes place along path of least resistance"
- · Greatest motion at most flexible segment
 - Disc?
 - Facet?
 - -ETC?
- Increasing evidence shows increasing range of motion does not correlate to improved function.

31 Improved function/comfort with:

- · Optimal balance of:
 - Muscular stability
 - Flexibility
- "Core" muscle endurance is more important than strength
- · Choosing the right exercise for you
- Good ergonomics
 - Avoid sitting in any one position too long
 - Lift with care
 - Ask for help if too heavy

32 Effective options in PT

- Mobilization/Manipulation
- Directional preference exercise
- · Stabilization exercise
- Lumbar traction